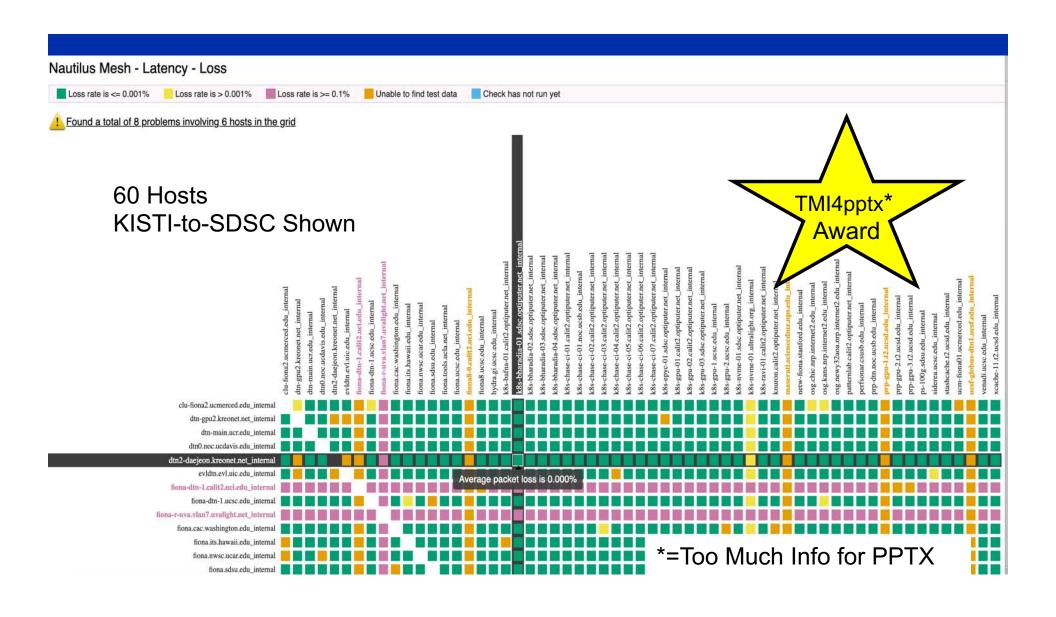
Science DMZ Global Considerations


Presenter: Tom DeFanti, Qualcomm Institute, Co-PI
Larry Smarr, Calit2 Director and PI
Ilkay Altintas, Camille Crittenden, Ken Kreutz-Delgado, Phil
Papadopoulos, Tajana Rosing, Frank Wuerthwein, Co-PIs
John Graham, Senior Development Engineer
Dima Mishin, Isaac Nealey, Joel Polizzi, Mark Yashar, Programmers
UC San Diego and UC Berkeley

PRP Technical Deliverables 2015 - 2017

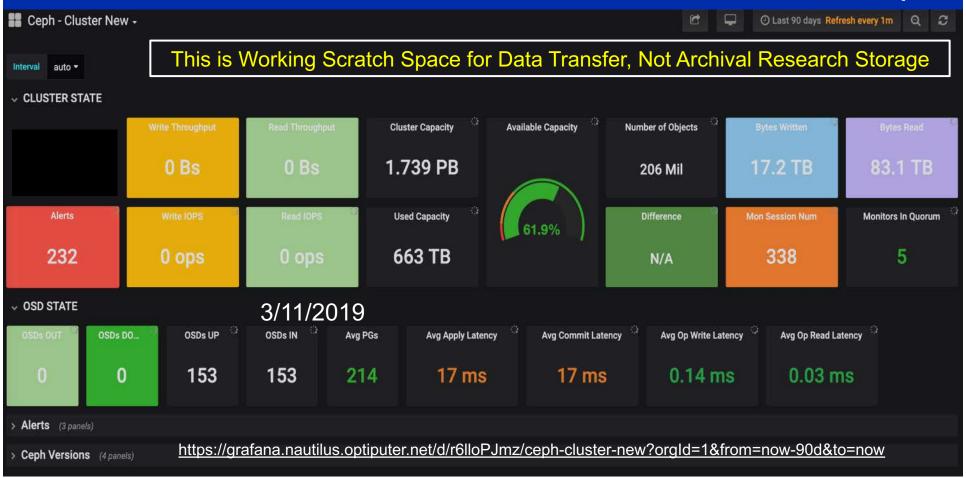
- Phase 0: Tested Layer2 CENIC Networks and FIONAs—early 2015
- Phase 1: A Scalable Network for Optimizing Data Transfer—2015-2017
 - Layer 3 Data Transfer & Measurement Network
 - Tested, Debugged, Measured, Optimized, and MaDDash'ed Layer 3
 - Supported Rates up to 9.7/10, 37/40 Gb/s in 10GB Bursts
 - Included UvAmsterdam and Korea (KISTI)
 - Showed Full Bandwidth Utilization
 - Essentially No TCP Backoff on Long Distance Best-Efforts Networks
- This is What Most Other Research Platforms are Focusing on—Big Data Transfer

PRPv1 to PRPv2: The Transition from Network Diagnosing to Application Support

- PRPv1 Designed, Built, and Installed ~40 Purpose-built FIONAs,
 Tuned to Measure and Diagnose End-to-End 10G, 40G and 100G
- But, Our PRP NSF Funding Requires Showing Use of the PRP by Scientists and Engineers—It's a Data Grant, not a Networking Grant
- Note: Our Scientists Clearly Need More than Bandwidth Tests
 - Teams of Scientists Want to Share Their Data at High Speed and Compute on It
 - They Need to Interoperate with Commercial and University Clouds
- So PRPv2 Added DMZ-Distributed Temporary Storage
 - 1.7PB total in 14 ~200GB previous PRPv1 FIONAs in Campus DMZs

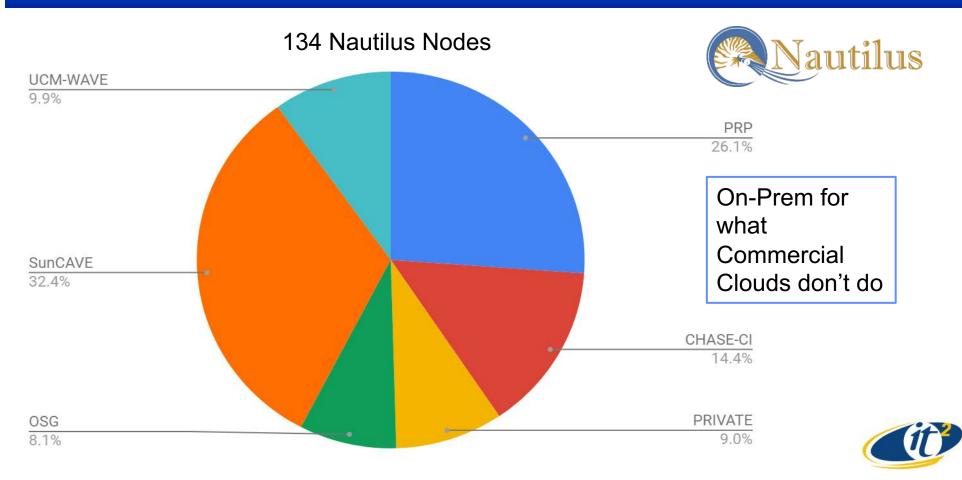
Why PRPv2 Adopted Kubernetes

- PRP FIONAs Are Coupled by Kubernetes Into the "Nautilus Hypercluster"
 - Kubernetes "Pods" Encapsulate Application Container(s), Storage Resources, and Execution Options
 - Implements PRP Cooperative Research Groups Support with Policy-Based Scheduling by Use of CILogon and Kubernetes Namespaces—704 Users in Namespaces as of 7/15/19
 - Allows Cloud Native Storage Integration (e.g., Rook/Ceph/EdgeFS)
 - Enables Us to Update Overnight, without local assistance, a RP Scaling Necessity
 - Emerging Solutions for Sophisticated SDN Overlay Network, Firewall, and Network Policy Controls
- Allows Easy User Job Scaling to Heterogeneous Platforms:
 - Deskside, Rack-Mounted, Supercomputers, even IOT Gizmos like ML on Remote Cameras
 - Amazon Elastic Container Service for Kubernetes (Amazon EKS)
 - Google Kubernetes Engine (GKE) (TensorFlow)
 - Microsoft Azure Kubernetes Service (AKS)



"Kubernetes with Rook/Ceph Allows Us to Manage Petabytes of Distributed Storage and GPUs for Data Science,

While We Measure and Monitor Network Use." -- John Graham, Calit2/QI UC San Diego


Detailed Real-Time Monitoring of PRP Nautilus: UCD, UCSD, UCI, UCSB, UCLA, UCR, Stanford, UCAR, UCM, UCSC, UHM Ceph

Grafana Showing State of Nautilus 9-10-19

Community Participation Allowed PRP-Paid Nautilus Nodes to be Quadrupled—*Pot Luck Supercomputing*™

Road Trip! Installing Community Shared Storage and GPUs in June, December & January at UC Merced, UC Santa Cruz, UC Riverside, and Stanford

PACIFIC RESEARCH PLATFORM

2017: PRP Connected 70 UCSD SunCAVE and 20 UCM WAVE 4K Screens to Share VR 2018: Added their 90 Game GPUs to PRP/OSG for Machine Learning Computations

UC Merced WAVE 20 Screens 20 GPUs

UCSD SunCAVE 70 Screens 70 GPUs

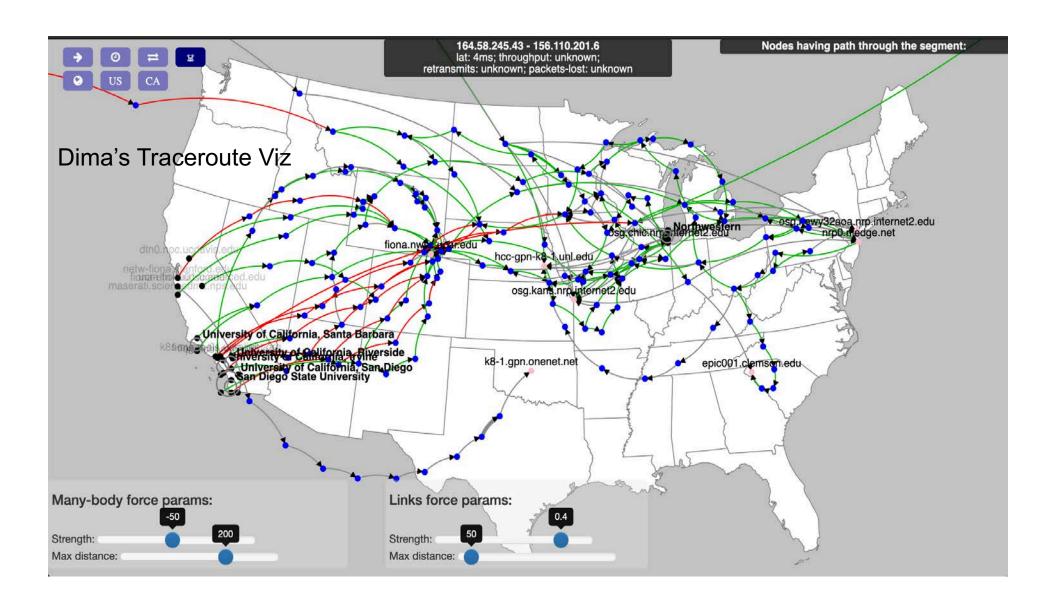
Top Nautilus GPU users August 2019					
PI	Campus	August 2019 GPU SU	FIONA8 Equivalent	August 2019 CPU SU	August 2019 Mem SU
Frank Wuerthwein	UCSD	80084	13.90	398124.41	8.13864E+14
Mark Alber	UCR	40761	7.08	37131.21	6.60061E+13
Hao Su	UCSD	16396	2.85	42547.91	2.78718E+14
Nuno Vasconcelos	UCSD	10991	1.91	11218.07	9.11693E+13
Jeff Krichmar	UCI	6587	1.14	6997.06	2.20582E+13
Falko Kuester	UCSD	6211	1.08	35404.91	5.68019E+14
Anshul Kundaje	Stanford	6063	1.05	1481.62	5.38638E+13
Ravi Ramamoorthi	UCSD	4822	0.84	6767.49	3.83436E+13
Larry Smarr	UCSD	4359	0.76	3171.25	2.20892E+13
Manmohan Chandraker	UCSD	3788	0.66	3304.47	1.02188E+14
Tom DeFanti	UCSD	3203	0.56	2040.4	8.82778E+12
Nuno Vasconcelos	UCSD	2293	0.40	3797.22	3.37342E+13
Kurt Schoenhoff	Australia	1921	0.33	4910.91	1.79054E+13
Nuno Vasconcelos	UCSD	1888	0.33	1017.46	1.67571E+13
Dinesh Bharadia	UCSD	1771	0.31	5724.15	2.71821E+13
Padhraic Smyth	UCI	1387	0.24	647.53	1.09787E+13
Jurgen Schulze	UCSD	1330	0.23	10.88	3.9717E+12
Larry Smarr	UCSD	1314	0.23	0.57	2.34185E+12
Jurgen Schulze	UCSD	1306	0.23	0.7	1.92583E+13
Nuno Vasconcelos	UCSD	1209	0.21	5984.29	1.33191E+13
Eric Shearer	UCI	1131	0.20	1308.7	3.85832E+12

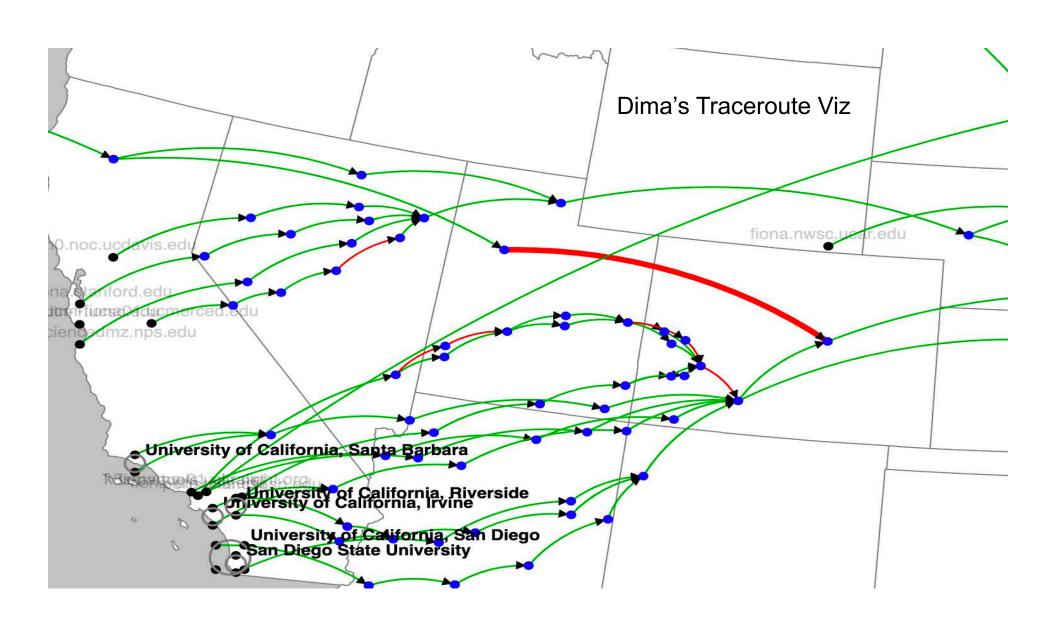
Top Nautilus GPU Users in August 2019

FIONA8
equivalent:
running an 8-GPU
machine 24x7x30

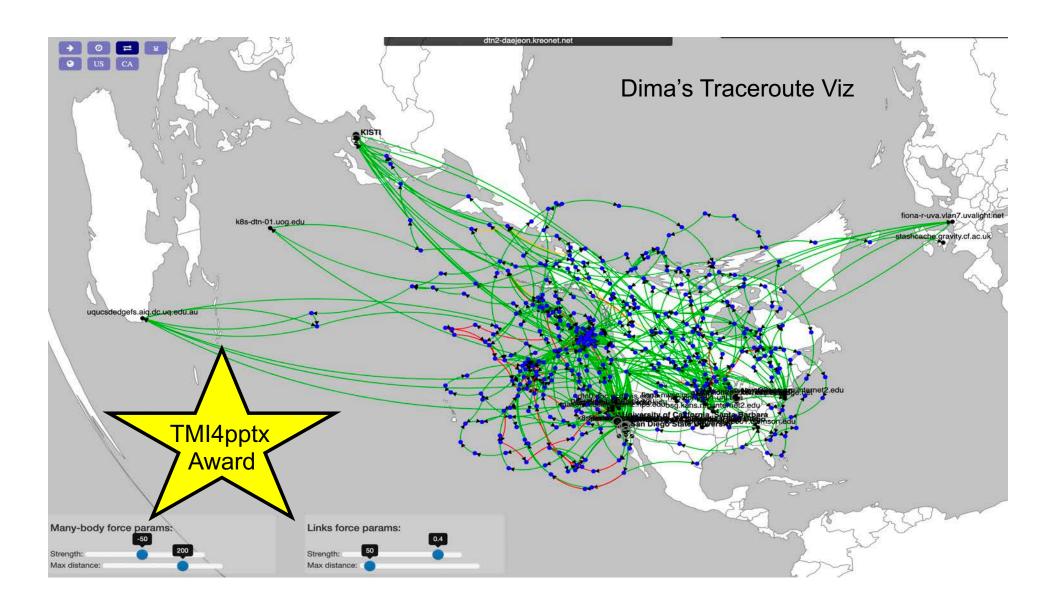
Top User is IceCube in OSG background mode

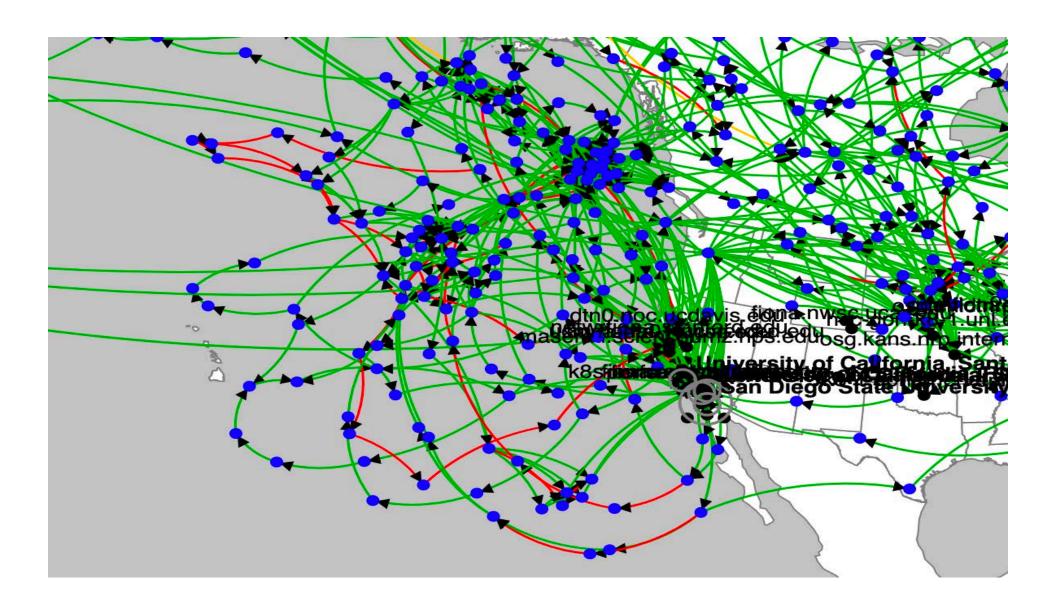
Others are ML

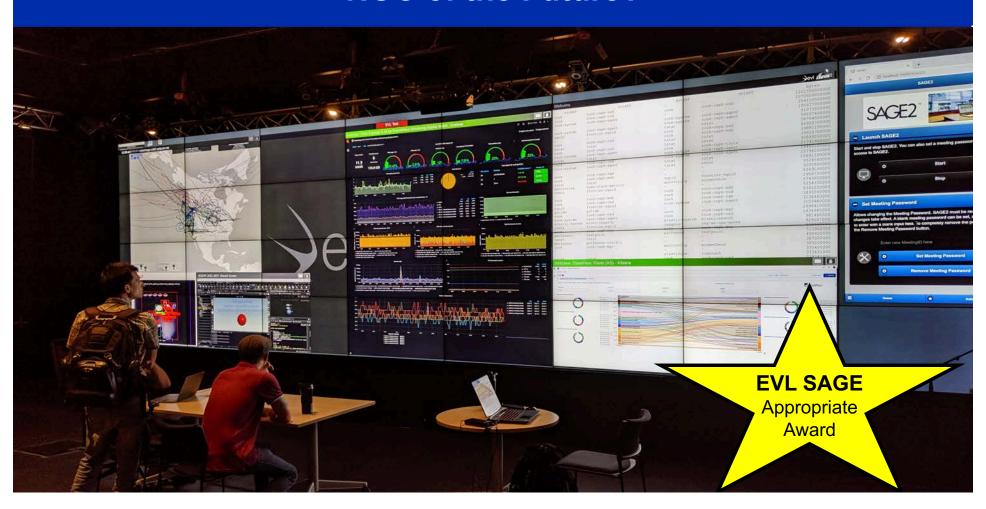



NRP_GridFTP - Throughput Throughput >= 7500Mbps Throughput < 7500Mbps Throughput <= 5000Mbps Unable to retrie Found a total of 4 problems involving 3 hosts in the grid Now testing to **AWS** StashCache Internet2 gpn-fiona-mizzou.scidmz.rnet.missouri.edu ps-40g-gridftp.calit2.optiputer.net osg.newy32aoa.nrp.internet2.edu dtn0.lsanca.pacificwave.net osg.chic.nrp.internet2.edu fiona01.tacc.utexas.edu ncc-fiona-v6.unl.edu dtn1-v6.nysernet.org fiona.sce.pennren.net dtn1.nysernet.org hcc-fiona.unl.edu fiona01.tacc.utexas.edu dtn1-v6.nysernet.org Average throughput is 12.456Gbps gpn-fiona-mizzou.scidmz.rnet. Average throughput is 9.727Gbps dtn0.lsanca.pacificwave.net

osg.kans.nrp.internet2.edu


fiona sce pennren net





NOC of the Future?

Excellent Performance California to UQ

Nautilus Mesh - Latency ucsd - Loss

Loss rate is <= 0.001% Loss rate is > 0.001% Loss rate is >= 0.1% Unable to find test data Check has not run yet

A

Found a total of 1 problem involving 1 host in the grid

Going Global in Manageable Ways: The Experiment and the Challenge

- Great Networking with 10-100Gbps Science DMZ Performance is a Necessary but not Sufficient Condition to Enable Data-Driven Researchers
- They need Science DMZs & DTNs with Low-Cost Storage, Encryption, Large RAM CPUs, GPUs, TPUs, FPGAs, Sensors, and High-Availability Computing
- Measuring and Monitoring at all Levels is Key to Better Usage and Security
- Compatibility with Google, Microsoft, and Amazon Clouds, and NSF/DOE Supercomputers Helps Ensure Scalability and Continuation—CloudBank
- Kubernetes makes it a sane and extensible platform
- Open Science Grid and Internet2's NRP Pilot Brings In Global Experience
- More Global Partners are Welcome to Join our Pot Luck Supercomputing!

PRP/TNRP/CHASE-CI Support and Community:

- US National Science Foundation (NSF) awards to UCSD, NU, and SDSC
 - CNS-1456638, CNS-1730158, ACI-1540112, ACI-1541349, & OAC-1826967
 - OAC 1450871 (NU) and OAC-1659169 (SDSU)
- UC Office of the President, Calit2 and Calit2's UCSD Qualcomm Institute
- San Diego Supercomputer Center and UCSD's Research IT and Instructional IT
- Partner Campuses: UCB, UCSC, UCI, UCR, UCLA, USC, UCD, UCSB, SDSU, Caltech, NU, UWash UChicago, UIC, UHM, CSUSB, HPWREN, UMo, MSU, NYU, UNeb, UNC,UIUC, UTA/Texas Advanced Computing Center, FIU, KISTI, UVA, AIST
- CENIC, Pacific Wave/PNWGP, StarLight/MREN, The Quilt, Kinber, Great Plains Network, NYSERNet, LEARN, Open Science Grid, Internet2, DOE ESnet, NCAR/UCAR & Wyoming Supercomputing Center, AWS, Google, Microsoft, Cisco

