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Rook: Ceph + EdgeFS

September 18th 2019

● HPWREN 
○ EdgeFS

■ S3X ( posix + S3 )
■ Nextcloud

● Nautilus
○ Ceph Block / CephFS / S3

■ Nextcloud/Aria2
■ Globus ( container )



HPWREN K8s HA cluster

September 18th 2019

● m1.calit2.optiputer.net
● m2.calit2.optiputer.net
● m3.calit2.optiputer.net
● k8s-hpwren-01.sdsc.optiputer.net
● k8s-hpwren-02.sdsc.optiputer.net
● ps-100g-scidmz-0.tools.ucla.net  
● c3.hpwren.calit2.uci.edu
● fiona-100g.ucsc.edu



Rook Operator for EdgeFS 

Rook enables EdgeFS storage systems to run on Kubernetes using Kubernetes primitives.



EdgeFS ISGW (Inter-Segment GateWay) CRD

EdgeFS Inter-Segment Gateway link is 
a building block for EdgeFS cross-site, 
cross-cloud global namespace 
synchronization functionality.

It distributes modified chunks of data 
asynchronously and enables seamless 
as well as geographically transparent 
access to files, objects and block 
devices. 

It is important to note that a file or a 
block device consists of one or more 
objects, and so, within EdgeFS scope, 
ultimately everything is an object, 
globally immutable and self-validated.



HPWREN Public Facing Nextcloud

September 18th 2019



Nautilus Nextcloud



Nautilus NextCloud S3



Nextcloud OCDownloader ( Aria2 )



Nextcloud DICOM Viewer



Globus transfer container for THREDDS

https://gitlab.nautilus.optiputer.net/prp/globus-connect/blob/master/README.md

https://gitlab.nautilus.optiputer.net/prp/globus-connect/blob/master/README.md


Braingeneers



I'm currently using S3/PRP to train deep learning models on neural recordings of freely behaving mice. A 12 hour recording on 256 
electrodes is over 1TB of data that is housed on S3. I utilize the PRP GPUs for training on tensorflow and perform random-access reads 
of 3.6GB data files at nearly 100MB/sec data read rates on S3 from within the PRP cluster. The most basic of these models is trained 
to detect the animals sleep state (wake, non-rem, rem sleep) from raw neural recordings, and can be seen here: 
https://www.youtube.com/watch?v=bUdxS29UIvw&feature=youtu.be.

The Braingeneers at UCSC and Genomics Institute at large here is ramping up to work with large datasets like this on a regular 
basis. Using S3 for storage of those datasets presents a very manageable and scalable platform on which we can run basic data 
processing, storage, ML workflows, and many other data analysis tasks across a team of people, institutions (UCSC, USF, WUSTL), and 
devices. 

I'm currently working on a more complex set of models which require training on 10M image files. I've uploaded the 10M files to our 
S3 bucket and am using the project as a litmus test for using S3 as a larger scale datastore for future operations.

Dimitry has been instrumental in helping make S3 capable of scaling to both massive datasets as well as massive numbers of 
objects. He's solved two significant performance issues which caused our first attempts to upload the 10M file dataset to fail. With those 
issues out of the way we now have the files uploaded and I'm able to access them at scale.

https://www.youtube.com/watch?v=bUdxS29UIvw&feature=youtu.be


Key takeaways in terms of S3 performance:

 - I've been able to random-access read large (3.6GB) files on S3 in 5MB chunks at up to 1.5 GB per second in a single 
python process (requiring about 50GB of RAM to service a large queue of as many as 1000 parallel IO operations), S3 didn't 
blink at these tests, which Dimitry was monitoring as I ran them.

 - I have had troubles achieving the same with random HDF5 file reads because HDF5 limits you to a less efficient 
multiprocessing approach rather than the more efficient asyncio. Tests on large HDF5 files using random-access reads 
have achieved about 200MB/sec read rates. I may yet solve that problem and get parallelization of HDF5 reads significantly 
higher, but it's a work in progress.

 - When uploading large numbers of files (10M in my testing) the S3 upload speeds are now very good, I was getting 80 files 
per sec upload and that appeared to be scaling nearly linearly with the number of `aws s3 sync` processes I ran (I got 
up to 4, and did not test higher).



 - Once we got 10M files uploaded, access to the bucket has remained performant and scalable.

- The only drawback we currently have is that a bucket will become nearly inaccessible while a large scale upload like 
this is going on. Operations like `aws s3 ls` typically timeout, and the upload process slows for periods of 5-10 minutes 
before getting back to full speed. Since this only occurs during massive data load operations it's not a show-stopper, but it 
does leave room for performance improvement.

- My last takeaway is that I wouldn't actually store 10M individual files on S3 again. A better approach 
is to use an smaller set of uncompressed zip files to store the many individual files, then perform 
random-access reads against S3 to pull out the file that's needed. However this approach requires a 
non-trivial implementation of boto3, one I'm still working to perfect in python.



Rob and I were talking about cost difference between running what I've done to date on PRP/S3 vs. 
AWS/S3. While we didn't figure out any specific number, it's quite substantial. I've performed operations like 
this on AWS S3 in the past and come away with 10k+ monthly billing statements.

Below are a few Grafana snapshots we took over time to illustrate some of the points above. This first one 
shows consistent 80 files per second being uploaded to S3, though as noted I expect the performance 
can go higher.



This Grafana screenshot is a zoom of the one above, in it we can see that the upload rate charges ahead 
at periods, and then tapers off in a cyclic fashion. During the periods where it tapers off the bucket is 
less accessible for operations like `aws s3 ls`. On average we still achieve high upload rates, but the 
upload does seem to take its toll on the metadata store on S3. We are still looking into where a 
solution to this is possible. If so it would really blow the top off performance of S3.



Mike Perez (community manager @ Redhat for CEPH) and Carlos Maltzahn (CROSS @ UCSC) have pinged me about doing a 
CEPH day @ UCSC.

In parallel I'd like to arrange a working group between Mike (and maybe an engineer he designates), Dmitry, David, our Cluster 
Admins and possibly a grad student or two.

In addition to the Braingeneers that David is working on we're about to start an NIH funded project called the 'pan genome' (will replace 
the current linear reference which UCSC assembled version of 1 of in 2000). It will involve sequencing 350+ individuals where each file 
will be 3-9TB H5 files (the first 10 people will be 100TB H5 files). All data will be stored in an on-prem CEPH cluster as well as 
Google Cloud. Computation requires about 48 hours per genome using 8 2080's plus a ton of other things (one step required a 2TB 
memory machine...) and we'll likely re-process all data many many times. Ultimately it will generate the pan genome ie a graph of 
humanity:
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